陶西平创新人才学院 物理学科汇报

汇报人:吴术刚

一. 基础拓展课程

●参与人数:100人以内

●参与对象:面向初中二年级及以下具有数理潜质的学生,符合条件的小学生、初中生均可报名,择优参加。

- ●课程内容:
- ●1. 力学: 质点运动、牛顿运动定律、动量、机械能、动量守恒、机械能守恒等基本概念和定律。
- ●2. 热学:分子动理论、热力学第一定律、热力学第二定律、气体的性质等基础知识。
- ●3. 电磁学:静电场、恒定电流、磁场、电磁感应等基本概念和规律。

- 4. 光学:光的直线传播、光的反射和折射、光的干涉和衍射等光学现象。
- ●5. 近代物理:原子结构、原子核、量子物理等基础知识。
- ●6. 实验:基本物理实验方法及初、高中基础物理实验。

●基础拓展课程的内容相对较为基础,旨在加强学生对物理学基本知识的掌握,提高学科兴趣,同时遴选出具备优秀的学习习惯和学习态度,较高的独立思考能力和创新能力,以及较强的团队合作精神的学生。

二. 拔尖赋能课程

- ●参与人数:50人以内
- ●参与对象:面向高一年级及以下具备一定的数理基础,对物理有浓厚兴趣,有一定的创新能力和批判性思维的学生。

●课程内容:

- ●1. 力学进阶:质点和刚体的运动、动量定理和动量矩定理、机械能守恒和能量守恒定律、碰撞和爆炸等。同时还会涉及一些更复杂的运动学问题,如质点系和刚体的运动、相对运动等。
- ●2. 热学进阶:热力学第一定律和第二定律的深入理解和应用,包括熵、熵增等概念。
- ●3. 电磁学进阶:静电场和恒定电流的深入理解和应用,包括高斯定理和环路定理等。同时还会涉及磁场和电磁感应的进阶内容,如磁感应强度、磁通量、法拉第电磁感应定律等。

- 4. 光学进阶:光的波动性和粒子性的理解,以及光的干涉、衍射和偏振等现象的深入理解和应用。
- ●5. 近代物理进阶:原子结构、原子核的深入理解和应用,包括量子力学的基本概念和应用等。
- ●6. 实验:大学普通物理实验,设计性创新实验。

拔尖赋能课程在基础知识上进行了拓展和深化,涵盖了更多大学物理的内容,内容相对较难,旨在考察学生对物理知识的深入理解和应用能力。

三. 拔尖创新课程

●参与人数:25人以内

●参与对象:面向高中学生,要求掌握了一定的大学物理知识,具备较高的解决问题的技巧,具备较强的独立思考能力和创新能力。

- ●课程内容:拔尖创新课程更加深入和广泛,涵盖了物理学的前沿领域和热点问题,包括:
- 1. 力学深入:质点和刚体的复杂运动、相对论力 学等。
- 2. 热力学与统计物理:热力学第三定律、统 计物理的基本概念和应用等。
- 3. 电磁学与电动力学:电磁场的理论和计算、 麦克斯韦方程组等。

- 4. 光学与量子力学:量子光学、激光物理等前 沿领域的知识。
- ●5. 原子核物理与粒子物理:原子核的结构和性质、 粒子物理的基本概念和实验等。
- ●拔尖创新课程的内容非常深入和广泛,旨在加强学生对物理学的深入理解,选拔出具有潜力和才华的 拔尖创新人才。

二、寒假课程 完成情况

1、基础拓展课程

授课教师:

吴术刚

参与学员:

北京十二中:35人

北京十中: 4人(中途退出2人)

课程计划及完成情况

周数	周一	周二	周三	周四	周五	周六	周日
1	1月13日	1月14日	1月15日	1月16日	1月17日	1月18日	1月19日
	平衡条件、 三力平衡、 多力平衡	杆绳模型、 动态平衡、 整体法和隔 离法	牛顿第一定 律、探究力、 走度的关系、 生顿第二本 律的基本 用	力 学 单位制、 瞬时加速度 问题、超重 和失重	动 力学中 的 临界问 题、连接 体 问题	休息	板块模型、 传送带模 型、动力 学中的图 像 问题
2	1月20日	1月21日	1月22日	1月23日			
	曲线运动、 运动的合成 与分解、小 船渡河问题、 关联速度问 题	平抛运动、 一般的抛体 运动	圆周运动的 描述、向心 力、向心加 速度	生活中的圆 周运动、水 平和竖直面 内的圆周运 动分析			

2、拔尖创新课程

授课教师:

浦仕毕 李晗(外聘)

参与人员:

北京十二中:8人

北京钱学森中学: 3人

人大附丰台学校: 2人

北京十八中:2人

课程计划及完成情况

周数	周一	周二	周三	周四	周五	周六	周日		
1	1月13日	1月14日	1月15日	1月16日	1月17日	1月18日	1月19日		
						简谐振动	简谐振动		
						(-)	(<u></u>)		
2	1月20日	1月21日	1月22日	1月23日	1月24日	1月25日	1月26日		
		简谐 振 动	相对论	相对论	相对论				
		(三)	(-)	(=)	(三)				
3	1月27日	1月28日	1月29日	1月30日	1月31日	2月1日	2月2日		
4	2月3日	2月4日	2月5日	2月6日	2月7日	2月8日	2月9日		
					力学综合	力学综合	力学综合		
					(—)	(<u>_</u>)	(三)		
5	2月10日	2月11日	2月12日	2月13日	2月14日				
		力学综合	力学综合	力学综合	力学综合				
		(四)	(五)	(六)	(七)				

大學學 中央中華

逻辑清晰, 简单写懂, 学习氛围好, 弥补了在本概学习的不免缺陷。

学习制国好,课程有体系和框架感,并让我获得了题目练习的机气,有一定收款。

30

4

部

三、存在问题 及建议

- 1、学生基础水平差异较大不能顺利衔接。为确保后续运行顺利,需提前进行布局,各学校协调从一开始就加入,以消除基础知识差距。
- 2、教师资源不足,不同学段的学生基础水平参差不齐,需要分层教学,需要投入更多的教师资源。应积极鼓励更多学校老师加入,发挥各自专长,以减轻主教练的工作负担,激发教练团队的积极性,共同培养全区杰出学生。
- 3、学生参与积极性的问题。应加大宣传力度,并设立 奖励机制,对优秀学员给予一定的政策奖励,以持续激 发他们的学科热情。

4、课程的前沿性和创新性。中学阶段打好基础非常重要,但也不能一直学习旧知识,应与高校、科研机构或企业合作,让学生了解一些前沿领域,以及必备的基础知识,指导平时的学习,拓宽学生视野。

谢谢

汇报人:吴术刚

